Jacobi Theta Functions over Number Fields

نویسندگان

  • Olav K. Richter
  • Howard Skogman
چکیده

We use Jacobi theta functions to construct examples of Jacobi forms over number fields. We determine the behavior under modular transformations by regarding certain coefficients of the Jacobi theta functions as specializations of symplectic theta functions. In addition, we show how sums of those Jacobi theta functions appear as a single coefficient of a symplectic theta function. 2000 Mathematics Subject Classification: 11F55; 11F27, 11F41

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi Forms over Complex Quadratic Fields via the Cubic Casimir Operators

We prove that the center of the algebra of differential operators invariant under the action of the Jacobi group over a complex quadratic field is generated by two cubic Casimir operators, which we compute explicitly. In the spirit of Borel, we consider Jacobi forms over complex quadratic fields that are also eigenfunctions of these Casimir operators, a new approach in the complex case. Theta f...

متن کامل

Cyclic Identities Involving Ratios of Jacobi Theta Functions

Identities involving cyclic sums of terms composed from Jacobi elliptic functions evaluated at p equally shifted points were recently found. The purpose of this paper is to re-express these cyclic identities in terms of ratios of Jacobi theta functions, since many physicists prefer using Jacobi theta functions rather than Jacobi elliptic functions.

متن کامل

Theta Functions of Indefinite Quadratic Forms over Real Number Fields

We define theta functions attached to indefinite quadratic forms over real number fields and prove that these theta functions are Hilbert modular forms by regarding them as specializations of symplectic theta functions. The eighth root of unity which arises under modular transformations is determined explicitly.

متن کامل

Theta functions of quadratic forms over imaginary quadratic fields

is a modular form of weight n/2 on Γ0(N), where N is the level of Q, i.e. NQ−1 is integral and NQ−1 has even diagonal entries. This was proved by Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the Poisson summation formula to generalize their results for arbitrary n and he also computes the theta multiplier explicitly. Stark [8] gives a different proof by converting θ...

متن کامل

Common Zeros of Theta Functions and Central Hecke L-values of Cm Number Fields of Degree 4

In this note, we apply the method of Rodriguez Villegas and Yang (1996) to construct a family of infinite many theta series over the HilbertBlumenthal modular surfaces with a common zero. We also relate the nonvanishing of the central L-values of certain Hecke characters of non-biquadratic CM number fields of degree 4 to the nonvanishing of theta functions at CM points in the Hilbert-Blumenthal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004